Publications by authors named "E Zschech"

2D polymers have emerged as a highly promising category of nanomaterials, owing to their exceptional properties. However, the understanding of their fracture behavior and failure mechanisms remains still limited, posing challenges to their durability in practical applications. This work presents an in-depth study of the fracture kinetics of a 2D polyimine film, utilizing in situ tensile testing within a transmission electron microscope (TEM).

View Article and Find Full Text PDF

High-quality patterning determines the properties of patterned emerging two-dimensional (2D) conjugated polymers and is essential for potential applications in future electronic nanodevices. However, the most suitable patterning method for 2D polymers has yet to be determined because we still do not have a comprehensive understanding of their damage mechanisms by visualizing the structural modification that occurs during the patterning process. Here, the damage mechanisms during patterning of 2D polymers, induced by various patterning methods, are unveiled based on a systematic study of structural damage and edge morphology in an imine-based 2D polymer (polyimine).

View Article and Find Full Text PDF

Surface terminations profoundly influence the intrinsic properties of MXenes, but existing terminations are limited to monoatomic layers or simple groups, showing disordered arrangements and inferior stability. Here we present the synthesis of MXenes with triatomic-layer borate polyanion terminations (OBO terminations) through a flux-assisted eutectic molten etching approach. During the synthesis, Lewis acidic salts act as the etching agent to obtain the MXene backbone, while borax generates BO species, which cap the MXene surface with an O-B-O configuration.

View Article and Find Full Text PDF

High-resolution imaging of Cu/low-k on-chip interconnect stacks in advanced microelectronic products is demonstrated using full-field transmission X-ray microscopy (TXM). The comparison of two lens-based laboratory X-ray microscopes that are operated at two different photon energies, 8.0 keV and 9.

View Article and Find Full Text PDF

High-resolution imaging of buried metal interconnect structures in advanced microelectronic products with full-field X-ray microscopy is demonstrated in the hard X-ray regime, i.e., at photon energies > 10 keV.

View Article and Find Full Text PDF