Light absorption and scattering by metal nanoparticles can drive catalytic reactions at their surface via the generation of hot charge carriers, elevated temperatures, and focused electromagnetic fields. These photoinduced processes can substantially alter the shape, surface structure, and oxidation state of surface atoms of the nanoparticles and therefore significantly modify their catalytic properties. Information on such local structural and chemical change in plasmonic nanoparticles is however blurred in ensemble experiments, due to the typical large heterogeneity in sample size and shape distributions.
View Article and Find Full Text PDFSilver orthophosphate is a highly promising visible light photocatalyst with high quantum yield for solar driven water oxidation. Recently, the performance of this material has been further enhanced using facet-controlled synthesis. The tetrahedral particles with {111} exposed facets demonstrate higher photocatalytic performance than the cubic particles with {100} exposed facets.
View Article and Find Full Text PDFWe present the fabrication of tunable plasmonic hafnium nitride (HfN) nanoparticles. HfN is a metallic refractory material with the potential of supporting plasmon resonances in the visible range, similar to silver and gold, but with the additional benefits of high melting point, chemical stability, and mechanical hardness. However, the preparation of HfN nanoparticles and the experimental demonstration of their plasmonic potential are still in their infancy.
View Article and Find Full Text PDFThe water splitting activity of hematite is sensitive to the film processing parameters due to limiting factors such as a short hole diffusion length, slow oxygen evolution kinetics, and poor light absorptivity. In this work, we use direct current (DC) magnetron sputtering as a fast and cost-effective route to deposit metallic iron thin films, which are annealed in air to obtain well-adhering hematite thin films on F:SnO-coated glass substrates. These films are compared to annealed hematite films, which are deposited by reactive radio frequency (RF) magnetron sputtering, which is usually used for depositing metal oxide thin films, but displays an order of magnitude lower deposition rate.
View Article and Find Full Text PDF