In many sub-Saharan states, despite governments' awareness campaigns highlighting potential impacts of aquatic pollution, there is a very limited action to protect the riverine systems. Managing the quality of water and sediments needs knowledge of pollutants, agreed standards, and relevant policy framework supporting monitoring and regulation. This study reports metal concentrations in rivers in industrializing Ethiopia.
View Article and Find Full Text PDFThe original version of this article unfortunately contained mistakes in the Tables (1 and 2) caption and article title is updated.
View Article and Find Full Text PDFSelecting a suitable model for a water quality study depends on the objectives, the characteristics of the study area, and the availability, appropriateness, and quality of data. In areas where in-stream chemical and hydrological data are limited but where estimates of nutrient loads are needed to guide management, it is necessary to apply more generalized models that make few assumptions about underlying processes. This paper presents the selection and application of a model to estimate total nitrogen (TN) and total phosphorus (TP) loads in two semiarid and adjacent catchments exposed to pollution risk in north-central Ethiopia.
View Article and Find Full Text PDFKombolcha, a city in Ethiopia, exemplifies the challenges and problems of the sub-Saharan countries where industrialization is growing fast but monitoring resources are poor and information on pollution unknown. This study monitored metals Cr, Cu, Zn, and Pb concentrations in five factories' effluents, and in the effluent mixing zones of two rivers receiving discharges during the rainy seasons of 2013 and 2014. The results indicate that median concentrations of Cr in the tannery effluents and Zn in the steel processing effluents were as high as 26,600 and 155,750 µg/L, respectively, much exceeding both the USEPA and Ethiopian emission guidelines.
View Article and Find Full Text PDF