Publications by authors named "E Zacharioudakis"

Article Synopsis
  • The study investigates the combined effects of the APOE4 allele and TREM2 R47H variant on Alzheimer's disease in female mice with tauopathy, revealing how these factors exacerbate neurodegeneration.
  • Researchers found that the presence of both genetic risk factors worsens tau pathology and enhances inflammatory signaling in the brain, specifically through the cGAS-STING pathway.
  • The findings suggest that microglial senescence and mitochondrial changes may play a critical role in the progression of Alzheimer's disease, highlighting potential targets for future research and treatment.
View Article and Find Full Text PDF

The escape of mitochondrial double-stranded dsRNA (mt-dsRNA) into the cytosol has been recently linked to a number of inflammatory diseases. Here, we report that the release of mt-dsRNA into the cytosol is a general feature of senescent cells and a critical driver of their inflammatory secretome, known as senescence-associated secretory phenotype (SASP). Inhibition of the mitochondrial RNA polymerase, the dsRNA sensors RIGI and MDA5, or the master inflammatory signaling protein MAVS, all result in reduced expression of the SASP, while broadly preserving other hallmarks of senescence.

View Article and Find Full Text PDF

The strongest risk factors for Alzheimer's disease (AD) include the χ4 allele of apolipoprotein E (APOE), the variant of triggering receptor expressed on myeloid cells 2 (TREM2), and female sex. Here, we combine and ( ) in female tauopathy mice to identify the pathways activated when AD risk is the strongest, thereby highlighting disease-causing mechanisms. We find that the variant induces neurodegeneration in female mice without impacting hippocampal tau load.

View Article and Find Full Text PDF

Senescent cells drive age-related tissue dysfunction partially through the induction of a chronic senescence-associated secretory phenotype (SASP). Mitochondria are major regulators of the SASP; however, the underlying mechanisms have not been elucidated. Mitochondria are often essential for apoptosis, a cell fate distinct from cellular senescence.

View Article and Find Full Text PDF