Background: Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmunity and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined.
Methods: We report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS, including autoantibody profiling, cytokine analysis, and deep immune mapping.
Therapeutic proteins, the fastest growing class of pharmaceuticals, are subject to rapid proteolytic degradation in vivo, rendering them inactive. Sophisticated drug delivery systems that maintain protein stability, prolong therapeutic effects, and reduce administration frequency are urgently required. Herein, a mechanoresponsive hydrogel is developed contained within a soft robotic drug delivery (SRDD) device.
View Article and Find Full Text PDFHepatic encephalopathy (HE) is a neuropsychiatric condition frequently associated with cirrhosis and portosystemic shunting (PSS). It imposes a significant clinical and economic burden, with increasing attention toward identifying modifiable factors that could improve outcomes. Emerging evidence suggests that vitamin D deficiency (VDD), prevalent in patients with cirrhosis, may contribute to the development and severity of HE.
View Article and Find Full Text PDFApproved inhibitors of KRASG12C prevent oncogenic activation by sequestering the inactive, GDP-bound (OFF) form rather than directly binding and inhibiting the active, GTP-bound (ON) form. This approach provides no direct target coverage of the active protein. Expectedly, adaptive resistance to KRASG12C (OFF)-only inhibitors is observed in association with increased expression and activity of KRASG12C(ON).
View Article and Find Full Text PDFCRISPR-Cas9 systems can be used for precise genome editing in filamentous fungi, including . However, current CRISPR-Cas9 systems for rely on relatively complex or multi-step cloning methods to build a plasmid expressing both Cas9 and an sgRNA targeting a genomic locus. In this study we improve on existing plasmid-based CRISPR-Cas9 systems for by creating an extremely simple-to-use CRISPR-Cas9 system for genome editing.
View Article and Find Full Text PDF