Publications by authors named "E Yu Kaniukov"

A promising approach that uses the sol-gel method to manufacture new breathable active films with self-cleaning and antibacterial surfaces is based on the PET membranes obtained via ion track technology with a pore density of 10 cm and a pore diameter of about 500 ± 15 nm, coated with a layer of TiO anatase, with a thickness of up to 80 nm. The formation of the photocatalytically active TiO anatase phase was confirmed using Raman analysis. Coating the PET membrane with a layer of TiO increased the hydrophobicity of the system (CA increased from 64.

View Article and Find Full Text PDF

The soft/soft (CoFeO)  : (NiCuZnFeO) (CFO /NCZO ) nanocomposites (NCs) based on spinel ferrites were produced by the sol-gel method with varying phase's ratio ( :  = 0 : 1; 1 : 1; 2 : 1; 3 : 1; 1 : 3; 1 : 2 and 1 : 0). All NCs consisted of 2 single phases (initial spinels) without any impurities and the absence of chemical interaction between phases. Structural features were investigated and analyzed.

View Article and Find Full Text PDF

Binary and ternary composites (CM) based on M-type hexaferrite (HF), polymer matrix (PVDF) and carbon nanomaterials (quasi-one-dimensional carbon nanotubes-CNT and quasi-two-dimensional carbon nanoflakes-CNF) were prepared and investigated for establishing the impact of the different nanosized carbon on magnetic and electrodynamic properties. The ratio between HF and PVDF in HF + PVDF composite was fixed (85 wt% HF and 15 wt% PVDF). The concentration of CNT and CNF in CM was fixed (5 wt% from total HF + PVDF weight).

View Article and Find Full Text PDF

Cobalt-zinc ferrite nanoparticles were synthesized using environmentally friendly approach with quince extract as a reducing agent. Crystal structure and morphology of the obtained materials were studied by XRD, SEM-EDS, Mössbauer and IR spectroscopy. The synthesized nanoparticles have a cubic spinel structure and crystallite size ranging from 5 to 9 nm.

View Article and Find Full Text PDF

High-quality and compact arrays of Ni nanowires with a high ratio (up to 700) were obtained by DC electrochemical deposition into porous anodic alumina membranes with a distance between pores equal to 105 nm. The nanowire arrays were examined using scanning electron microscopy, X-ray diffraction analysis and vibration magnetometry at 300 K and 4.2 K.

View Article and Find Full Text PDF