Technological innovation yielded opportunities to obtain mRNA expression data for prostate cancer (PCa) patients even prior to biopsy, which can be used in a precision medicine approach to treatment decision-making. This can apply in particular to predict the risk of, and time to biochemical recurrence (BCR). Most mRNA-based models currently proposed to this end are designed for risk classification and post-operative prediction.
View Article and Find Full Text PDFObjectives: We previously demonstrated the potential of radiomics for the prediction of severe histological placenta accreta spectrum (PAS) subtypes using T2-weighted MRI. We aim to validate our model using an additional dataset. Secondly, we explore whether the performance is improved using a new approach to develop a new multivariate radiomics model.
View Article and Find Full Text PDFBackground: Placenta accreta spectrum (PAS) is a rare, life-threatening complication of pregnancy. Predicting PAS severity is critical to individualise care planning for the birth. We aim to explore whether radiomic analysis of T2-weighted magnetic resonance imaging (MRI) can predict severe cases by distinguishing between histopathological subtypes antenatally.
View Article and Find Full Text PDFPredicting the risk of, and time to biochemical recurrence (BCR) in prostate cancer patients post-operatively is critical in patient treatment decision pathways following surgical intervention. This study aimed to investigate the predictive potential of mRNA information to improve upon reference nomograms and clinical-only models, using a dataset of 187 patients that includes over 20,000 features. Several machine learning methodologies were implemented for the analysis of censored patient follow-up information with such high-dimensional genomic data.
View Article and Find Full Text PDF