This work describes the design and implementation of optics for EXCLAIM, the EXperiment for Cryogenic Large-Aperture Intensity Mapping. EXCLAIM is a balloon-borne telescope that will measure integrated line emission from carbon monoxide at redshifts z < 1 and ionized carbon ([CII]) at redshifts z = 2.5 - 3.
View Article and Find Full Text PDFNanomechanical oscillators offer numerous advantages for quantum technologies. Their integration with superconducting qubits shows promise for hardware-efficient quantum error-correction protocols involving superpositions of mechanical coherent states. Limitations of this approach include mechanical decoherence processes, particularly two-level system (TLS) defects, which have been widely studied using classical fields and detectors.
View Article and Find Full Text PDFLithium niobate is a promising material for developing quantum acoustic technologies due to its strong piezoelectric effect and availability in the form of crystalline thin films of high quality. However, at radio frequencies and cryogenic temperatures, these resonators are limited by the presence of decoherence and dephasing due to two-level systems. To mitigate these losses and increase device performance, a more detailed picture of the microscopic nature of these loss channels is needed.
View Article and Find Full Text PDFIn situ tunable photonic filters and memories are important for emerging quantum and classical optics technologies. However, most photonic devices have fixed resonances and bandwidths determined at the time of fabrication. Here we present an in situ tunable optical resonator on thin-film lithium niobate.
View Article and Find Full Text PDFWe developed a broadband two-layer anti-reflection (AR) coating for use on a sapphire half-wave plate (HWP) and an alumina infrared (IR) filter for the cosmic microwave background (CMB) polarimetry. Measuring the faint CMB B-mode signals requires maximizing the number of photons reaching the detectors and minimizing spurious polarization due to reflection with an off-axis incident angle. Sapphire and alumina have high refractive indices of 3.
View Article and Find Full Text PDF