Pharmaceuticals, stimulants, and biocides enter the environment via wastewater from urban, domestic, and industrial areas, in addition to sewage, aquaculture and agriculture runoff. While some of these compounds are easily degradable in environmental conditions, others are more persistent, meaning they are less easily degraded and can stay in the environment for long periods of time. By exploring the adsorptive properties of a wide range of pharmaceuticals, stimulants, and biocides onto particles relevant for marine conditions, we can better understand their environmental behaviour and transport potential.
View Article and Find Full Text PDFPharmaceuticals have been deemed as 'contaminants of emerging concern' within the Arctic and are a potentially perennial form of pollution. With recent innovations in detection technology for organic compounds, researchers have been able to find substantial evidence of the presence and accumulation of pharmaceutical pollution within the Arctic marine ecosystem. The pharmaceuticals, which are biologically active substances used in diagnosis, treatment or prevention of diseases, may persist in the Arctic environment and may have an impact on the resident marine biota.
View Article and Find Full Text PDFAlthough pharmaceuticals are increasingly detected in abiotic matrices in the Arctic, the accumulation of drugs in the resident biota and trophic transfer have not been yet examined. This study investigated the behaviour of several pharmaceuticals in the rocky-bottom, macrobenthic food web in the coastal zone of Isfjorden (western Spitsbergen) using stable isotope analyses (SIA) coupled with liquid chromatography-mass spectrometry (LC-MS/MS). Across 16 macroalgal and invertebrate species the highest average concentration was measured for ciprofloxacin (CIP) (on average 60.
View Article and Find Full Text PDFThe presence of antibiotic residues in water is linked to the emergence of antibiotic resistance globally and necessitates novel decontamination strategies to minimize antibiotic residue exposure in both the environment and food. A holistic assessment of cold atmospheric pressure plasma technology (CAPP) for β-lactam antibiotic residue removal is described in this study. CAPP operating parameters including plasma jet voltage, gas composition and treatment time were optimized, with highest β-lactam degradation efficiencies obtained for a helium jet operated at 6 kV.
View Article and Find Full Text PDFBackground: Fungi have evolved for 1 billion years and due to their adaptability and resilience can be found in multiple habitats around the globe. Among numerous species of fungi, some are pathogenic, and humans have battled since the dawn of organized agriculture to reduce production losses. With the arrival of fungicides many gains have been made in this struggle.
View Article and Find Full Text PDF