Publications by authors named "E Westhof"

X-ray crystallography is a fundamental technique that provides atomic-level insights into RNA structures. However, obtaining crystals of RNA structures diffracting to high resolution is challenging. We introduce a simple strategy to enhance the resolution limit of RNA crystals by the selective substitution of Watson-Crick pairs by GU pairs within RNA sequences.

View Article and Find Full Text PDF
Article Synopsis
  • - RNA-Puzzles is a collaborative project focused on improving the prediction of RNA three-dimensional structures, with predictions made by modeling groups before experimental structures are published.
  • - A significant set of predictions was made by 18 groups for 23 different RNA structures, including various elements like ribozymes and aptamers.
  • - The study highlights key challenges in RNA modeling, such as identifying helix pairs and ensuring proper stacking, and notes that some top-performing groups also excelled in a separate competition (CASP15).
View Article and Find Full Text PDF
Article Synopsis
  • - Conformational dynamics of RNA is essential for its biological roles and therapeutic applications.
  • - The CECAM workshop in Paris focused on how both experimental and computational methods can explore RNA dynamics.
  • - Key insights and takeaways were shared during the workshop, highlighting the importance of understanding RNA behavior for advanced research and development.
View Article and Find Full Text PDF
Article Synopsis
  • Lepidoptera, which includes moths and butterflies, is characterized by female heterogamy (Z0 or ZW), differing from most insects that exhibit male heterogamy (XY).
  • Recent research has clarified the structure of the W chromosome in female Lepidoptera, revealing a 10.1 megabase chromosome and identifying 3,593 previously unannotated genes.
  • The study finds that the W chromosome in Ditrysia species likely evolved through multiple mechanisms, supporting the idea of independent origins rather than a single ancestral lineage.
View Article and Find Full Text PDF

tRNA superwobbling, used by certain bacteria and organelles, is an intriguing decoding concept in which a single tRNA isoacceptor is used to decode all synonymous codons of a four-fold degenerate codon box. While Escherichia coli relies on three tRNAGly isoacceptors to decode the four glycine codons (GGN), Mycoplasma mycoides requires only a single tRNAGly. Both organisms express tRNAGly with the anticodon UCC, which are remarkably similar in sequence but different in their decoding ability.

View Article and Find Full Text PDF