Publications by authors named "E Wentrup-Byrne"

A series of surface-modified expanded poly(tetrafluoroethylene) membranes showed varied levels of in vitro macrophage proinflammatory response. Membranes containing a mixture of phosphate and hydroxyl groups (as determined by X-ray photoelectron spectroscopy analysis) stimulate greater macrophage activation than samples containing a mixture of phosphate and carboxylic acid segments. The types of proteins that adsorbed irreversibly from serum onto the two samples with the highest and lowest cellular response were investigated using surface-matrix-assisted laser desorption ionisation time-of-flight mass spectrometry.

View Article and Find Full Text PDF

Successful implantation of any biomaterial depends on its mechanical, architectural, and surface properties. Materials with good bulk properties seldom possess the appropriate surface characteristics required for good biointegration. The present study investigates the results of surface modification of a highly porous, fully fluorinated polymeric substrate, expanded poly(tetrafluoroethylene) (ePTFE), with a view to improving the surface bioactivity and hence ultimately its biointegration.

View Article and Find Full Text PDF

Surface modification via graft copolymerization is an attractive method for optimizing polymers used in biomedical applications. We developed a novel method using a mixed solvent system (either water and dichloromethane (DCM) or water, methanol and DCM) consisting of two solvent phases for grafting 2-(methacryloyloxy)ethyl phosphate onto expanded polytetrafluoroethylene (ePTFE). This new method resulted in the fabrication of grafted membranes with greater grafting extents (GEs) (as evaluated from x-ray photoelectron spectroscopy (XPS)) in the organic phase than those obtained when grafting was carried out in a single phase.

View Article and Find Full Text PDF

A block copolymer consisting of a phosphate-containing moiety (poly[2-(methacryloyloxy)ethyl phosphate], PMOEP) and a keto-containing moiety (poly[2-(acetoacetoxy)ethyl methacrylate], PAAEMA) showed good stability after attachment to an APS amine-modified glass slide, as did both of the respective homopolymers. The PAAEMA homopolymer can attach to the APS amine groups via covalent linkages, while the PMOEP homopolymer most likely attaches through electrostatic interactions involving deprotonated phosphate and protonated amine groups. To elucidate the conformation of the block copolymer after attachment, particularly with respect to the PMOEP segment orientation, principal component analysis (PCA) of time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra of the surface-attached polymer layers was performed.

View Article and Find Full Text PDF

Adsorption of well-defined fluorinated polymers onto clinically relevant poly(tetrafluoroethylene) (PTFE) substrates offers an attractive method for modifying the surface properties of chemically inert PTFE. Reversible addition-fragmentation chain transfer (RAFT) was successfully used for synthesis of the polymers in this study: the homopolymers poly(2,3,4,5,6-pentafluorostyrene) (PFS), poly(2,2,3,3-tetrafluoropropyl acrylate) (PTFPA), and poly(2,2,3,3-tetrafluoropropyl methacrylate) (PTFPMA) as well as their block copolymers with tert-butyl acrylate ( (t)BA). Water-soluble blocks were synthesized through the hydrolysis of the t-butyl side groups of P( (t)BA) to the corresponding carboxylic acid.

View Article and Find Full Text PDF