Background: The presented study identified the appropriate ocrelizumab dosing regimen for patients with pediatric-onset multiple sclerosis (POMS).
Methods: Patients with POMS aged 10-17 years were enrolled into cohort 1 (body weight [BW] < 40 kg, ocrelizumab 300 mg) and cohort 2 (BW ≥ 40 kg, ocrelizumab 600 mg) during a 24-week dose-exploration period (DEP), followed by an optional ocrelizumab (given every 24 weeks) extension period.
Primary Endpoints: pharmacokinetics, pharmacodynamics (CD19 B-cell count); secondary endpoint: safety; exploratory endpoints: MRI activity, protocol-defined relapses, Expanded Disability Status Scale (EDSS) score change.
Evidence suggests that the gut microbiome may play a role in multiple sclerosis (MS). However, the majority of the studies have focused on gut bacterial communities; none have examined the fungal microbiota (mycobiota) in persons with pediatric-onset multiple sclerosis (POMS). We examined the gut mycobiota in persons with and without POMS through a cross-sectional examination of the gut mycobiota from 46 participants' stool samples (three groups: 18 POMS, 13 acquired monophasic demyelinating syndromes [monoADS], and 15 unaffected controls).
View Article and Find Full Text PDFIn multiple sclerosis (MS) the circulating metabolome is dysregulated, with indole lactate (ILA) being one of the most significantly reduced metabolites. We demonstrate that oral supplementation of ILA impacts key MS disease processes in two preclinical models. ILA reduces neuroinflammation by dampening immune cell activation as well as infiltration; and promotes remyelination and in vitro oligodendrocyte differentiation through the aryl hydrocarbon receptor (AhR).
View Article and Find Full Text PDF