Publications by authors named "E W Hagaman"

A porous triazine and carbazole bifunctionalized task-specific polymer has been synthesized via a facile Friedel-Crafts reaction. The resultant porous framework exhibits excellent CO2 uptake (18.0 wt%, 273 K and 1 bar) and good adsorption selectivity for CO2 over N2.

View Article and Find Full Text PDF

The dynamic and structural properties of a room-temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium(trifluoromethanesulfonimide) ([C4mim][Tf2N]) confined in silica and carbon mesopores were investigated by molecular dynamics (MD) simulations and nuclear magnetic resonance (NMR) experiments. The complex interfacial microstructures of confined [C4mim][Tf2N] are attributed to the distinctive surface features of the silica mesopore. The temperature-dependent diffusion coefficients of [C4mim][Tf2N] confined in the silica or carbon mesopore exhibit divergent behavior.

View Article and Find Full Text PDF

A new strategy is successfully applied to "old" acetyl compounds. A free-standing, porous, N-doped carbonaceous membrane is facilely prepared from the thermal treatment of a pyrrole-ring-containing polymeric membrane based on the superacid-catalyzed copolymerization of acetyl monomers. An exceptional ideal CO2 /N2 permselectivity of 43.

View Article and Find Full Text PDF

A porous, nitrogen-doped carbonaceous free-standing membrane (TFMT-550) is prepared by a facile template-free method using letrozole as an intermediate to a triazole-functionalized-triazine framework, followed by carbonization. Such adsorption/diffusion membranes exhibit good separation performance of CO2 over N2 and surpassing the most recent Robeson upper bound. An exceptional ideal CO2 /N2 permselectivity of 47.

View Article and Find Full Text PDF

The search for a better carbon dioxide (CO(2) ) capture material is attracting significant attention because of an increase in anthropogenic emissions. Porous materials are considered to be among the most promising candidates. A series of porous, nitrogen-doped carbons for CO(2) capture have been developed by using high-yield carbonization reactions from task-specific ionic liquid (TSIL) precursors.

View Article and Find Full Text PDF