Iodine is an atmospheric trace element emitted from oceans that efficiently destroys ozone (O). Low O in airborne dust layers is frequently observed but poorly understood. We show that dust is a source of gas-phase iodine, indicated by aircraft observations of iodine monoxide (IO) radicals inside lofted dust layers from the Atacama and Sechura Deserts that are up to a factor of 10 enhanced over background.
View Article and Find Full Text PDFThe rarity of reports in the literature of brief and spatially limited observations of drizzle at temperatures below -20°C suggest that riming and other temperature-dependent cloud microphysical processes such as heterogeneous ice nucleation and ice crystal depositional growth prevent drizzle persistence in cold environments. In this study, we report on a persistent drizzle event observed by ground-based remote-sensing measurements at McMurdo Station, Antarctica. The temperatures in the drizzle-producing cloud were below -25°C and the drizzle persisted for a period exceeding 7.
View Article and Find Full Text PDFThe Cloud System Evolution in the Trades (CSET) study was designed to describe and explain the evolution of the boundary layer aerosol, cloud, and thermodynamic structures along trajectories within the north-Pacific trade-winds. The study centered on 7 round-trips of the NSF NCAR Gulfstream V (GV) between Sacramento, CA and Kona, Hawaii between 1 July and 15 August 2015. The CSET observing strategy was to sample aerosol, cloud, and boundary layer properties upwind from the transition zone over the North Pacific and to resample these areas two days later.
View Article and Find Full Text PDFBackground: Parathyroid carcinoma (PC) is rare and diagnostically challenging. Reported outcomes are rather poor and the incidence might be increasing.
Material And Methods: We performed a nationwide study on all cases (n= 32) diagnosed in 2000-2011 in Finland, and compared clinical and histopathological characteristics and outcome to atypical parathyroid (APA; n= 28) and parathyroid adenomas (PA; n= 72).
Atmospheric lidar observations provide a unique capability to directly observe the vertical column of cloud and aerosol scattering properties. Detector and solar-background noise, however, hinder the ability of lidar systems to provide reliable backscatter and extinction cross-section estimates. Standard methods for solving this inverse problem are most effective with high signal-to-noise ratio observations that are only available at low resolution in uniform scenes.
View Article and Find Full Text PDF