The mammalian circadian regulatory proteins PER1 and PER2 undergo a daily cycle of accumulation followed by phosphorylation and degradation. Although phosphorylation-regulated proteolysis of these inhibitors is postulated to be essential for the function of the clock, inhibition of this process has not yet been shown to alter mammalian circadian rhythm. We have developed a cell-based model of PER2 degradation.
View Article and Find Full Text PDFThe serine/threonine protein kinase casein kinase I epsilon (CKIepsilon) is a key regulator of metazoan circadian rhythm. Genetic and biochemical data suggest that CKIepsilon binds to and phosphorylates the PERIOD proteins. However, the PERIOD proteins interact with a variety of circadian regulators, suggesting the possibility that CKIepsilon may interact with and phosphorylate additional clock components as well.
View Article and Find Full Text PDFThe timing of mammalian circadian rhythm is determined by interlocking negative and positive transcriptional feedback loops that govern the cyclic expression of both clock regulators and output genes. In mammals, nuclear localization of the circadian regulators PER1-3 is controlled by multiple mechanisms, including multimerization with PER and CRY proteins. In addition, nuclear entry of mammalian PER1 (mPER1) can be regulated by a phosphorylation-dependent masking of its nuclear localization signal.
View Article and Find Full Text PDFThe casein kinase I (CKI) family of protein kinases is a group of highly related, ubiquitously expressed serine/threonine kinases found in all eukaryotic organisms from protozoa to man. Recent advances in diverse fields, including developmental biology and chronobiology, have elucidated roles for CKI in regulating critical processes such as Wnt signaling, circadian rhythm, nuclear import, and Alzheimer's disease progression.
View Article and Find Full Text PDFThe molecular oscillator that keeps circadian time is generated by a negative feedback loop. Nuclear entry of circadian regulatory proteins that inhibit transcription from E-box-containing promoters appears to be a critical component of this loop in both Drosophila and mammals. The Drosophila double-time gene product, a casein kinase I epsilon (CKIepsilon) homolog, has been reported to interact with dPER and regulate circadian cycle length.
View Article and Find Full Text PDF