Physical properties of the mixed-valent tellurate of lithium and manganese, LiMn2TeO6, were investigated in measurements of ac and dc magnetic susceptibility χ, magnetization M, specific heat Cp, electron spin resonance (ESR), and nuclear magnetic resonance (NMR) in the temperature range 2−300 K under magnetic field up to 9 T. The title compound orders magnetically in two steps at T1 = 20 K and T2 = 13 K. The intermediate phase at T2 < T < T1 is fully suppressed by magnetic field µ0H of about 4 T.
View Article and Find Full Text PDFThe non-stoichiometric system LiNiSbO is a Li-deficient derivative of the zigzag honeycomb antiferromagnet LiNiSbO. Structural and magnetic properties of LiNiSbO were studied by means of X-ray diffraction, magnetic susceptibility, specific heat, and nuclear magnetic resonance measurements. Powder X-ray diffraction data shows the formation of a new phase, which is Sb-enriched and Li-deficient with respect to the structurally honeycomb-ordered LiNiSbO.
View Article and Find Full Text PDFLaccase is one of the oldest known and intensively studied fungal enzymes capable of oxidizing recalcitrant lignin-resembling phenolic compounds. It is currently well established that fungal genomes almost always contain several non-allelic copies of laccase genes (laccase multigene families); nevertheless, many aspects of laccase multigenicity, for example, their precise biological functions or evolutionary relationships, are mostly unknown. Here, we present a detailed evolutionary analysis of the laccase genes (CAZy - AA1_1) from fungi of the Polyporales order.
View Article and Find Full Text PDFUtilization of laccases in biotechnology and bioremediation has created a strong demand for the characterization of new enzymes and an increase in production of known laccases. Thus, additional research into these enzymes is critically needed. In this study, we report a comparative study of the biochemical and transcriptional properties of two different laccase isozymes from Trametes hirsuta 072 - the constitutive and inducible forms.
View Article and Find Full Text PDFModern theories of quantum magnetism predict exotic multipolar states in weakly interacting strongly frustrated spin-1/2 Heisenberg chains with ferromagnetic nearest neighbor (NN) inchain exchange in high magnetic fields. Experimentally these states remained elusive so far. Here we report strong indications of a magnetic field-induced nematic liquid arising above a field of ~13 T in the edge-sharing chain cuprate LiSbCuO ≡ LiCuSbO.
View Article and Find Full Text PDF