Publications by authors named "E Vanstreels"

Nucleocytoplasmatic transport plays an essential role in eukaryotic cell homeostasis and is mediated by karyopherins. Importin β1 (KPNB1) and its adaptor protein importin α1 (KPNA2) are the best-characterized karyopherins that effect nuclear import. Here, we identify a novel small-molecule inhibitor of the importin β1-mediated nuclear import.

View Article and Find Full Text PDF

Microtubule-targeting agents are an important class of anti-cancer drugs; their full potential is however not realized because of significant myelotoxicity and neurotoxicity. We here report 3-nitropyridine analogues as a novel group of microtubule-targeting agents with potent anti-cancer effects against a broad range of cancer types. We show that these 3-nitropyridines induce cell cycle arrest in the G2-M phase and inhibit tubulin polymerization by interacting with tubulin.

View Article and Find Full Text PDF

SARS-CoV-2 is associated with broad tissue tropism, a characteristic often determined by the availability of entry receptors on host cells. Here, we show that TMEM106B, a lysosomal transmembrane protein, can serve as an alternative receptor for SARS-CoV-2 entry into angiotensin-converting enzyme 2 (ACE2)-negative cells. Spike substitution E484D increased TMEM106B binding, thereby enhancing TMEM106B-mediated entry.

View Article and Find Full Text PDF

The continuous emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) urges better understanding of the functional motifs in the spike (S) protein and their tolerance to mutations. Here, we focused on the S2' motif, which, during virus entry, requires cleavage by a host cell protease to release the fusion peptide. Though belonging to an immunogenic region, the SARS-CoV-2 S2' motif (811-KPSKR-815) has shown hardly any variation, with its three basic (K/R) residues being >99.

View Article and Find Full Text PDF

We used classical linear and microwave-assisted synthesis methods to prepare novel -substituted, benzimidazole-derived acrylonitriles with antiproliferative activity against several cancer cells in vitro. The most potent systems showed pronounced activity against all tested hematological cancer cell lines, with favorable selectivity towards normal cells. The selection of lead compounds was also tested in vitro for tubulin polymerization inhibition as a possible mechanism of biological action.

View Article and Find Full Text PDF