Background And Purpose: The impact of intrafractional motion and deformations on clinical radiotherapy delivery has so far only been investigated by simulations as well as point and planar dose measurements. The aim of this study was to combine anthropomorphic 3D dosimetry with a deformable abdominal phantom to measure the influence of intra-fractional motion and gating in photon radiotherapy and evaluate the applicability in proton therapy.
Material And Methods: An abdominal phantom was modified to hold a deformable anthropomorphic 3D dosimeter shaped as a human liver.
Purpose: STereotactic Arrhythmia Radioablation (STAR) showed promising results in patients with refractory ventricular tachycardia. However, clinical data are scarce and heterogeneous. The STOPSTORM.
View Article and Find Full Text PDFPurpose/objective: Deep-inspiration breath-hold (DIBH) during radiotherapy may reduce dose to the lungs and heart compared to treatment in free breathing. However, intra-fractional target shifts between several breath-holds may decrease target coverage. We compared target shifts between four DIBHs at the planning-CT session with those measured on CBCT-scans obtained pre- and post-DIBH treatments.
View Article and Find Full Text PDFBackground: In respiratory gated radiotherapy, low latency between target motion into and out of the gating window and actual beam-on and beam-off is crucial for the treatment accuracy. However, there is presently a lack of guidelines and accurate methods for gating latency measurements.
Purpose: To develop a simple and reliable method for gating latency measurements that work across different radiotherapy platforms.