Publications by authors named "E V Tigeeva"

We studied a needle-free jet injection delivery of an experimental mRNA vaccine encoding the receptor-binding domain of the SARS-CoV-2 S protein (mRNA-RBD). Immunization of BALB/c mice with mRNA-RBD by a needle-free jet injector induced high levels of antibodies with virus-neutralizing activity and a virus-specific T-cell response. The immune response was low in the group of mice that received intramuscular injection of mRNA-RBD.

View Article and Find Full Text PDF
Article Synopsis
  • The H5N8 avian influenza virus poses a risk to bird populations and potential human health concerns, necessitating the development of a safe and effective vaccine.
  • Researchers created an experimental pVAX-H5 DNA vaccine that encodes a modified version of the virus's hemagglutinin and tested it on mice, resulting in a strong antibody and T-cell response.
  • Both liquid and lyophilized versions of the pVAX-H5 vaccine provided complete protection for mice against lethal influenza A virus challenges, showing promise as a candidate for combating H5N8.
View Article and Find Full Text PDF

In this study, we characterized recombinant hemagglutinin (HA) of influenza A (H5N8) virus produced in Chinese hamster ovary cells (CHO-K1s). Immunochemical analysis showed that the recombinant hemagglutinin was recognized by the serum of ferrets infected with influenza A (H5N8) virus, indicating that its antigenic properties were retained. Two groups of Balb/c mice were immunized with intramuscular injection of recombinant hemagglutinin or propiolactone inactivated A/Astrakhan/3212/2020 (H5N8) influenza virus.

View Article and Find Full Text PDF

A promising approach to the development of new means for preventing infection caused by tick-borne encephalitis virus can be DNA vaccines encoding polyepitope T-cell immunogens. A DNA vaccine pVAX-AG4-ub encoding an artificial polyepitope immunogen that includes cytotoxic and T-helper epitopes from the NS1, NS3, NS5, and E proteins of the tick-borne encephalitis virus has been obtained. The developed construct ensured the synthesis of the corresponding mRNAs in transfected eukaryotic cells.

View Article and Find Full Text PDF

Introduction: Nucleic acids represent a promising platform for creating vaccines. One disadvantage of this approach is its relatively low immunogenicity. Electroporation (EP) is an effective way to increase the DNA vaccines immunogenicity.

View Article and Find Full Text PDF