A comprehensive three-dimensional picture of magnetic ordering in high-density arrays of segmented FeGa/Cu nanowires is experimentally realized through the application of polarized small-angle neutron scattering. The competing energetics of dipolar interactions, shape anisotropy, and Zeeman energy in concert stabilize a highly tunable spin structure that depends heavily on the applied field and sample geometry. Consequently, we observe ferromagnetic and antiferromagnetic interactions both among wires and between segments within individual wires.
View Article and Find Full Text PDFWe present an analytical description of localized spin wave modes that form in a parabolic field minimum in a thin ferromagnetic film. Mode profiles proportional to Hermite functions are eigenfuctions of the applied field and exchange parts of the equations of motion, and also provide a basis for numerical approximation of magnetostatic interactions. We find that the spin wave modes are roughly equally spaced in frequency and have roughly equal coupling to a uniform driving field.
View Article and Find Full Text PDFThe spin wave dynamics in patterned magnetic nanostructures is under intensive study during the last two decades. On the one hand, this interest is generated by new physics that can be explored in such structures. On the other hand, with the development of nanolithography, patterned nanoelements and their arrays can be used in many practical applications (magnetic recording systems both as media and read-write heads, magnetic random access memory, and spin-torque oscillators just to name a few).
View Article and Find Full Text PDF