Traveling waves of excitation arise from the spatial coupling of local nonlinear events by transport processes. In corrosion systems, these electro-dissolution waves relay local perturbations across large portions of the metal surface, significantly amplifying overall damage. For the example of the magnesium alloy AZ31B exposed to sodium chloride solution, we report experimental results suggesting the existence of a vulnerable zone in the wake of corrosion waves where local perturbations can induce a unidirectional wave pulse or segment.
View Article and Find Full Text PDFCorrosion processes are often discussed as stochastic events. Here, it is shown that some of these seemingly random processes are not driven by nanoscopic fluctuations but rather by the spatial distribution of micrometer-scale heterogeneities that trigger fast reactions associated with corrosion. Using a novel excitable reaction-diffusion model, corrosion waves traveling over the metal surface and the associated material loss are described.
View Article and Find Full Text PDFThe article presents the possibility of increasing the water resistance of gypsum binders (GBs) obtained based on synthetic gypsum by introducing additives derived from industrial wastes. Regularities were obtained for the influence of the type and amount of additives on the water/gypsum ratio (W/G), strength indicators and water resistance of high-strength GB. The introduction of a single-component additive to improve water resistance does not have a significant effect.
View Article and Find Full Text PDFImplementation of nanotechnology in agriculture is of interest primarily to improve the growth and productivity of crops, and to minimize the use of traditional expensive chemical fertilizers. This work presents a simple energy-conservative approach for the synthesis of CoCuFeNi high entropy alloy nanoparticles (HEA-NPs) capable of forming a stable suspension with a concentration of 0.3 g/L.
View Article and Find Full Text PDF