Publications by authors named "E V Pitsik"

This review provides a comprehensive examination of recent developments in both neurofeedback and brain-computer interface (BCI) within the medical field and rehabilitation. By analyzing and comparing results obtained with various tools and techniques, we aim to offer a systematic understanding of BCI applications concerning different modalities of neurofeedback and input data utilized. Our primary objective is to address the existing gap in the area of meta-reviews, which provides a more comprehensive outlook on the field, allowing for the assessment of the current landscape and developments within the scope of BCI.

View Article and Find Full Text PDF

Sensorimotor integration (SI) brain functions that are vital for everyday life tend to decline in advanced age. At the same time, elderly people preserve a moderate level of neuroplasticity, which allows the brain's functionality to be maintained and slows down the process of neuronal degradation. Hence, it is important to understand which aspects of SI are modifiable in healthy old age.

View Article and Find Full Text PDF

Artificial intelligence (AI) has revolutionized numerous industries, including medicine. In recent years, the integration of AI into medical practices has shown great promise in enhancing the accuracy and efficiency of diagnosing diseases, predicting patient outcomes, and personalizing treatment plans. This paper aims at the exploration of the AI-based medicine research using network approach and analysis of existing trends based on PubMed.

View Article and Find Full Text PDF

Large-scale functional connectivity is an important indicator of the brain's normal functioning. The abnormalities in the connectivity pattern can be used as a diagnostic tool to detect various neurological disorders. The present paper describes the functional connectivity assessment based on artificial intelligence to reveal age-related changes in neural response in a simple motor execution task.

View Article and Find Full Text PDF

The problem of revealing age-related distinctions in multichannel electroencephalograms (EEGs) during the execution of motor tasks in young and elderly adults is addressed herein. Based on the detrended fluctuation analysis (DFA), differences in long-range correlations are considered, emphasizing changes in the scaling exponent α. Stronger responses in elderly subjects are confirmed, including the range and rate of increase in α.

View Article and Find Full Text PDF