The composition and atomic and electronic structure of a silicon nanowire (SiNW) array coated with tin oxide are studied at the spectromicroscopic level. SiNWs are covered from top to down with a wide bandgap tin oxide layer using a metal-organic chemical vapor deposition technique. Results obtained via scanning electron microscopy and X-ray diffraction showed that tin-oxide nanocrystals, 20 nm in size, form a continuous and highly developed surface with a complex phase composition responsible for the observed electronic structure transformation.
View Article and Find Full Text PDFEfficient light-stimulated hydrogen generation from top-down produced highly doped n-type silicon nanowires (SiNWs) with silver nanoparticles (AgNPs) in water-containing medium under white light irradiation is reported. It is observed that SiNWs with AgNPs generate at least 2.5 times more hydrogen than SiNWs without AgNPs.
View Article and Find Full Text PDFAtomic, electronic structure and composition of top-down metal-assisted wet-chemically etched silicon nanowires were studied by synchrotron radiation based X-ray absorption near edge structure technique. Local surrounding of the silicon and oxygen atoms in silicon nanowires array was studied on as-prepared nanostructured surfaces (atop part of nanowires) and their bulk part after, first time applied, in-situ mechanical removal atop part of the formed silicon nanowires. Silicon suboxides together with disturbed silicon dioxide were found in the composition of the formed arrays that affects the electronic structure of silicon nanowires.
View Article and Find Full Text PDF