Sarcospan (SSPN) is a 25-kDa transmembrane protein that is broadly expressed at the cell surface of many tissues, including, but not limited to, the myofibers from skeletal and smooth muscles, cardiomyocytes, adipocytes, kidney epithelial cells, and neurons. SSPN is a core component of the dystrophin-glycoprotein complex (DGC) that links the intracellular actin cytoskeleton with the extracellular matrix. It is also associated with integrin α7β1, the predominant integrin expressed in skeletal muscle.
View Article and Find Full Text PDFSkeletal muscle disease severity can often progress asymmetrically across muscle groups and heterogeneously within tissues. An example is Duchenne Muscular Dystrophy (DMD) in which lack of dystrophin results in devastating skeletal muscle wasting in some muscles whereas others are spared or undergo hypertrophy. An efficient, non-invasive approach to identify sites of asymmetry and degenerative lesions could enable better patient monitoring and therapeutic targeting of disease.
View Article and Find Full Text PDFHigh-throughput screening enables the discovery of disease-modifying small molecules. Here, we describe the development of a scalable, cell-based assay to screen for small molecules that modulate sarcospan for the treatment of Duchenne muscular dystrophy. We detail the hit validation pipeline, which includes secondary screening, gene/protein quantification, and an in vitro membrane stability assay.
View Article and Find Full Text PDFIn Duchenne muscular dystrophy, dystrophin loss leads to chronic muscle damage, dysregulation of repair, fibro-fatty replacement, and weakness. We develop methodology to efficiently isolate individual nuclei from minute quantities of frozen skeletal muscle, allowing single nuclei sequencing of irreplaceable archival samples and from very small samples. We apply this method to identify cell and gene expression dynamics within human DMD and mdx mouse muscle, characterizing effects of dystrophin rescue by exon skipping therapy at single nuclei resolution.
View Article and Find Full Text PDFIntroduction: Enterovirus (nonpolio) infection is widespread all over the world, registered as sporadic cases and large-scale outbreaks and can cause severe lesions such as serous meningitis. Epidemiological studies have shown that enterovirus (Picornaviridae; Enterovirus) variant Echovirus 30 (E30) is the most frequently detected variant in patients with enterovirus meningitis in the Russian Federation. However, no vaccines to prevent the disease caused by this pathogen have been developed so far.
View Article and Find Full Text PDF