Despite zoonotic potential, data are lacking on enteric infection diversity in wild apes. We employed a novel molecular diagnostic platform to detect enteric infections in wild chimpanzees and gorillas. Prevalent Cryptosporidium parvum, adenovirus, and diarrheagenic Escherichia coli across divergent sites and species demonstrates potential widespread circulation among apes in Africa.
View Article and Find Full Text PDFMigratory waterfowl are an important resource for consumptive and non-consumptive users alike and provide tremendous economic value in North America. These birds rely on a complex matrix of public and private land for forage and roosting during migration and wintering periods, and substantial conservation effort focuses on increasing the amount and quality of target habitat. Yet, the value of habitat is a function not only of a site's resources but also of its geographic position and weather.
View Article and Find Full Text PDFPesticides represent one of the greatest threats to bees and other beneficial insects in agricultural landscapes. Potential exposure is generated through compound- and crop-specific patterns of pesticide use over space and time and unique degradation behavior among compounds. Realized exposure develops through bees foraging from their nests across the spatiotemporal mosaic of floral resources and associated pesticides throughout the landscape.
View Article and Find Full Text PDFPopulations on the edge of a species' distribution may represent an important source of adaptive diversity, yet these populations tend to be more fragmented and are more likely to be geographically isolated. Lack of genetic exchanges between such populations, due to barriers to animal movement, can not only compromise adaptive potential but also lead to the fixation of deleterious alleles. The south-eastern edge of chimpanzee distribution is particularly fragmented, and conflicting hypotheses have been proposed about population connectivity and viability.
View Article and Find Full Text PDFHumans and other primates harbour complex gut bacterial communities that influence health and disease, but the evolutionary histories of these symbioses remain unclear. This is partly due to limited information about the microbiota of ancestral primates. Here, using phylogenetic analyses of metagenome-assembled genomes (MAGs), we show that hundreds of gut bacterial clades diversified in parallel (that is, co-diversified) with primate species over millions of years, but that humans have experienced widespread losses of these ancestral symbionts.
View Article and Find Full Text PDF