Biological remediation of agricultural soils contaminated with oil is complicated by the presence of residual amounts of chemical plant protection products, in particular, herbicides, which, like oil, negatively affect the soil microbiome and plants. In this work, we studied five strains of bacteria of the genera and , which exhibited a high degree of oil biodegradation (72-96%). All strains showed resistance to herbicides based on 2,4-D, imazethapyr and tribenuron-methyl, the ability to fix nitrogen, phosphate mobilization, and production of indole-3-acetic acid.
View Article and Find Full Text PDFMost chemical pesticides, in addition to their main functions (protection against diseases, weeds, and pests), also have a noticeable inhibitory effect on target crops. In a laboratory experiment and two-year field experiments (Russia, Trans-Urals), a study was made of the effect of the biopreparation Azolen ( IB-4) on plants of the Ekada 113 wheat variety under conditions of drought and stress caused by the exposure to the herbicide Chistalan (2.4-D and dicamba).
View Article and Find Full Text PDFBackground: a member of the ESKAPE group of bacterial pathogens, has developed multi-antimicrobial resistance (AMR), including resistance to carbapenems, which has increased alarmingly due to the acquisition of carbapenemase genes located on specific plasmids.
Methods: Four clinical isolates were collected from four patients of a neuro-intensive care unit in Moscow, Russia, during the point prevalence survey. The AMR phenotype was estimated using the Vitec-2 instrument, and whole genome sequencing (WGS) was done using Illumina and Nanopore technologies.
Tungsten is an attractive material for a variety of applications, from constructions in high-temperature vacuum furnaces to nontoxic shields for nuclear medicine, because of its distinctive properties, such as high thermal conductivity, high melting point, high hardness and high density. At the same time, the areas of the applicability of tungsten, to a large extent, are affected by the formation of surface oxides, which not only strongly reduce the mechanical properties, but are also prone to easily interacting with water. To alleviate this shortcoming, a series of superhydrophobic coatings for the tungsten surface was elaborated using the method of nanosecond laser treatment followed by chemical vapor deposition of hydrophobic fluorooxysilane molecules.
View Article and Find Full Text PDF