Front Endocrinol (Lausanne)
November 2024
The human body is regularly exposed to simple catechols and small phenols originating from our diet or as a consequence of exposure to various industrial products. Several biological properties have been associated with these compounds such as antioxidant, anti-inflammatory, or antiplatelet activity. Less explored is their potential impact on the endocrine system, in particular through interaction with the alpha isoform of the estrogen receptor (ERα).
View Article and Find Full Text PDFDietary polyphenols have been associated with many beneficial cardiovascular effects. However, these effects are rather attributed to small phenolic metabolites formed by the gut microbiota, which reach sufficient concentrations in systemic circulation. 4-Methylcatechol (4-MC) is one such metabolite.
View Article and Find Full Text PDFSubstituted catechols include both natural and synthetic compounds found in the environment and foods. Some of them are flavonoid metabolites formed by the gut microbiota which are absorbed afterwards. Our previous findings showed that one of these metabolites, 4-methylcatechol, exerts potent vasorelaxant effects in rats.
View Article and Find Full Text PDFThe human population is regularly exposed to bisphenols. The first compound of this class, bisphenol A, is burdened by numerous reports of its potential toxicity and has been hence replaced by its analogues, so-called next generation bisphenols. Their widespread use has made them pervasive throughout the environment.
View Article and Find Full Text PDFBackground: Cobalt is an essential trace element, but it can also rarely cause cobalt toxicity due to its release from cobalt-containing medical devices. Currently, there are no approved selective cobalt chelators, which would represent an optimal treatment modality.
Objective: This study aimed to develop a simple and complex methodological approach for screening potential cobalt chelators and evaluating their potential toxicity.