Attosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales. The reproducible generation and characterization of attosecond waveforms has been demonstrated so far only through the process of high-order harmonic generation. Several methods for shaping attosecond waveforms have been proposed, including the use of metallic filters, multilayer mirrors and manipulation of the driving field.
View Article and Find Full Text PDFIntense, mutually coherent beams of multiharmonic extreme ultraviolet light can now be created using seeded free-electron lasers, and the phase difference between harmonics can be tuned with attosecond accuracy. However, the absolute value of the phase is generally not determined. We present a method for determining precisely the absolute phase relationship of a fundamental wavelength and its second harmonic, as well as the amplitude ratio.
View Article and Find Full Text PDFShort wavelength free-electron lasers (FELs), providing pulses of ultrahigh photon intensity, have revolutionized spectroscopy on ionic targets. Their exceptional photon flux enables multiple photon absorptions within a single femtosecond pulse, which in turn allows for deep insights into the photoionization process itself as well as into evolving ionic states of a target. Here we employ ultraintense pulses from the FEL FERMI to spectroscopically investigate the sequential emission of electrons from gaseous, atomic argon in the neutral as well as the ionic ground state.
View Article and Find Full Text PDFThe seeded Free-Electron Laser (FEL) FERMI is the first source of short-wavelength light possessing the full coherence of optical lasers, together with the extreme power available from FELs. FERMI provides longitudinally coherent radiation in the Extreme Ultraviolet and soft x-ray spectral regions, and therefore opens up wide new fields of investigation in physics. We first propose experiments exploiting this property to provide coherent control of the photoionization of neon and helium, carry out numerical calculations to find optimum experimental parameters, and then describe how these experiments may be realized.
View Article and Find Full Text PDFThe calculation of diffracted intensities from an atomic model is a routine step in the course of structure solution, and its efficiency may be crucial for the feasibility of the study. An intense X-ray free-electron laser (XFEL) pulse can change the electron configurations of atoms during its action. This results in time-dependence of the diffracted intensities and complicates their calculation.
View Article and Find Full Text PDF