Background: The origin and genesis of highly malignant and heterogenous glioblastoma brain tumors remain unknown. We previously identified an enhancer-associated long non-coding RNA, LINC01116 (named HOXDeRNA here), that is absent in the normal brain but is commonly expressed in malignant glioma. HOXDeRNA has a unique capacity to transform human astrocytes into glioma-like cells.
View Article and Find Full Text PDFPurpose: Meningioma is the most common primary central nervous system tumor often causing serious complications, and presently no medical treatment is available. The goal of this study was to discover miRNAs dysregulated in meningioma, and explore miRNA-associated pathways amenable for therapeutic interventions.
Methods: Small RNA sequencing was performed on meningioma tumor samples to study grade-dependent changes in microRNA expression.
MicroRNA-10b (miR-10b) is an essential glioma driver and one of the top candidates for targeted therapies for glioblastoma and other cancers. This unique miRNA controls glioma cell cycle and viability via an array of established conventional and unconventional mechanisms. Previously reported CRISPR-Cas9-mediated miR-10b gene editing of glioma cells and established orthotopic glioblastoma in mouse models demonstrated the efficacy of this approach and its promise for therapy development.
View Article and Find Full Text PDFmiR-10b is silenced in normal neuroglial cells of the brain but commonly activated in glioma, where it assumes an essential tumor-promoting role. We demonstrate that the entire miR-10b-hosting HOXD locus is activated in glioma via the cis-acting mechanism involving 3D chromatin reorganization and CTCF-cohesin-mediated looping. This mechanism requires two interacting lncRNAs, HOXD-AS2 and LINC01116, one associated with HOXD3/HOXD4/miR-10b promoter and another with the remote enhancer.
View Article and Find Full Text PDF