Publications by authors named "E Urbauer"

Background And Aims: Histomorphology is a powerful and cost-efficient tool for evaluating inflammatory and neoplastic conditions. Inflammatory bowel disease (IBD) is a widespread condition with globally rising incidences, and a lot of research is done to better understand the pathogenesis of IBD and to identify potential therapeutic approaches. However, standardized and reproducible scores for the histomorphological evaluation of murine IBD models are lacking.

View Article and Find Full Text PDF

Mitochondrial dysfunction is associated with inflammatory bowel diseases (IBDs). To understand how microbial-metabolic circuits contribute to intestinal injury, we disrupt mitochondrial function in the epithelium by deleting the mitochondrial chaperone, heat shock protein 60 (Hsp60). This metabolic perturbation causes self-resolving tissue injury.

View Article and Find Full Text PDF

The capacity of a cell to maintain proteostasis progressively declines during aging. Virtually all age-associated neurodegenerative disorders associated with aggregation of neurotoxic proteins are linked to defects in the cellular proteostasis network, including insufficient lysosomal hydrolysis. Here, we report that proteotoxicity in yeast and Drosophila models for Parkinson's disease can be prevented by increasing the bioavailability of Ca2+, which adjusts intracellular Ca2+ handling and boosts lysosomal proteolysis.

View Article and Find Full Text PDF

Mitochondrial metabolism, dynamics, and stress responses in the intestinal stem cell niche play a pivotal role in regulating intestinal epithelial cell homeostasis, including self-renewal and differentiation. In addition, mitochondria are increasingly recognized for their involvement in sensing the metabolic environment and their capability of integrating host and microbial-derived signals. Gastrointestinal diseases such as inflammatory bowel diseases and colorectal cancer are characterized by alterations of intestinal stemness, the microbial milieu, and mitochondrial metabolism.

View Article and Find Full Text PDF

Intestinal transport and sensing processes and their interconnection to metabolism are relevant to pathologies such as malabsorption syndromes, inflammatory diseases, obesity and type 2 diabetes. Constituting a highly selective barrier, intestinal epithelial cells absorb, metabolize, and release nutrients into the circulation, hence serving as gatekeeper of nutrient availability and metabolic health for the whole organism. Next to nutrient transport and sensing functions, intestinal transporters including peptide transporter 1 (PEPT1) are involved in the absorption of drugs and prodrugs, including certain inhibitors of angiotensin-converting enzyme, protease inhibitors, antivirals, and peptidomimetics like β-lactam antibiotics.

View Article and Find Full Text PDF