Lynch Syndrome (LS) is an autosomal dominant genetic condition that causes a high risk of colorectal cancer. The hallmark of LS is genetic instability as a result of mismatch repair (MMR) deficiency, particularly in repetitive low complexity regions called microsatellites (MS). MLH1 mice deficient in MMR are prone to developing tumors in the colon, upon oral administration of dextran sodium sulfate (DSS), at a rate of more than 70%.
View Article and Find Full Text PDFA T-cell receptor (TCR) with optimal avidity to a tumor antigen can be used to redirect T cells to eradicate cancer cells via adoptive cell transfer. Cancer testis antigens (CTAs) are attractive targets because they are expressed in the testis, which is immune-privileged, and in the tumor. However, CTAs are self-antigens and natural TCRs to CTAs have low affinity/avidity due to central tolerance.
View Article and Find Full Text PDFAdoptive transfer of T cells that have been genetically modified to express an antitumor T-cell receptor (TCR) is a potent immunotherapy, but only if TCR avidity is sufficiently high. Endogenous TCRs specific to shared (self) tumor-associated antigens (TAAs) have low affinity due to central tolerance. Therefore, for effective therapy, anti-TAA TCRs with higher and optimal avidity must be generated.
View Article and Find Full Text PDFFor many years, clinicians and scientists attempt to develop methods to stimulate the immune system to target malignant cells. Recent data suggest that effective cancer vaccination requires combination immunotherapies to overcome tumor immune evasion. Through presentation of both MHC-I and II molecules, DCs-based vaccine platforms are effective in generating detectable CD4 and CD8 T cell responses against tumor-associated antigens.
View Article and Find Full Text PDFDespite melanoma immunogenicity and remarkable therapeutic effects of negative immune checkpoint inhibitors, a significant fraction of patients does not respond to current treatments. This could be due to limitations in tumor immunogenicity and profound immunosuppression in the melanoma microenvironment. Moreover, insufficient tumor antigen processing and presentation by dendritic cells (DC) may hamper the development of tumor-specific T cells.
View Article and Find Full Text PDF