Many mammalian cells, including endothelial cells and fibroblasts, align and elongate along the orientation of extracellular matrix (ECM) fibers in a gel when cultured . During cell elongation, clusters of focal adhesions (FAs) form near the poles of the elongating cells. FAs are mechanosensitive clusters of adhesions that grow under mechanical tension exerted by the cells' pulling on the ECM and shrink when the tension is released.
View Article and Find Full Text PDFThe extracellular matrix (ECM) is a highly complex structure through which biochemical and mechanical signals are transmitted. In processes of cell migration, the ECM also acts as a scaffold, providing structural support to cells as well as points of potential attachment. Although the ECM is a well-studied structure, its role in many biological processes remains difficult to investigate comprehensively due to its complexity and structural variation within an organism.
View Article and Find Full Text PDFThe mechanical interaction between cells and the extracellular matrix (ECM) is fundamental to coordinate collective cell behavior in tissues. Relating individual cell-level mechanics to tissue-scale collective behavior is a challenge that cell-based models such as the cellular Potts model (CPM) are well-positioned to address. These models generally represent the ECM with mean-field approaches, which assume substrate homogeneity.
View Article and Find Full Text PDFBackground: The teleost medaka (Oryzias latipes) is a well-established vertebrate model system, with a long history of genetic research, and multiple high-quality reference genomes available for several inbred strains. Medaka has a high tolerance to inbreeding from the wild, thus allowing one to establish inbred lines from wild founder individuals.
Results: We exploit this feature to create an inbred panel resource: the Medaka Inbred Kiyosu-Karlsruhe (MIKK) panel.
Background: Unraveling the relationship between genetic variation and phenotypic traits remains a fundamental challenge in biology. Mapping variants underlying complex traits while controlling for confounding environmental factors is often problematic. To address this, we establish a vertebrate genetic resource specifically to allow for robust genotype-to-phenotype investigations.
View Article and Find Full Text PDF