Magnetic antiperovskites, having chiral noncollinear antiferromagnetic ordering, have shown remarkable properties that range from negative thermal expansion to anomalous Hall effects. Nevertheless, details on the electronic structure, related to the oxidation states and the octahedral center's site effects, are still scarce. Here, we show a theoretical study, based on first-principles calculations in the framework of density-functional theory (DFT), on the electronic properties associated with the nitrogen site effects on the structural, electronic, magnetic, and topological degrees of freedom.
View Article and Find Full Text PDF