Knowledge of the natural diversity of arbuscular mycorrhizal fungi (AMF) and understanding of their biogeographical patterns and what drive them might help to the maintenance and preservation of ecosystems under a changing environment. The objective of this study was to evaluate the contribution of different environmental factors to the determination of the composition of AMF assemblages in representative sites within the Morrocoy National Park (Venezuela). The community structure of the AMF under the canopy of Coccoloba uvifera was investigated in four cays (Borracho, Muerto, Peraza, and Paiclás) and one mainland location (Las Luisas).
View Article and Find Full Text PDFPatterns in plant-soil biota interactions could be influenced by the spatial distribution of species due to soil conditions or by the functional traits of species. Gypsum environments usually constitute a mosaic of heterogeneous soils where gypsum and nongypsum soils are imbricated at a local scale. A case study of the interactions of plants with arbuscular mycorrhizal fungi (AMF) in gypsum environments can be illustrative of patterns in biotic interactions.
View Article and Find Full Text PDFDue to the important role of arbuscular mycorrhizal fungi (AMF) in ecosystem functioning, determination of the effect of management practices on the AMF diversity in agricultural soils is essential for the sustainability of these agro-ecosystems. The objective of this study was to compare the AMF diversity in Prunus persica roots under two types of fertilisation (inorganic, with or without manure) combined with integrated or chemical pest management in a Venezuelan agro-ecosystem. The AM fungal small-subunit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses.
View Article and Find Full Text PDFIn semiarid Mediterranean ecosystems, epiphytic plant species are practically absent, and only some species of palm trees can support epiphytes growing in their lower crown area, such as Phoenix dactylifera L. (date palm). In this study, we focused on Sonchus tenerrimus L.
View Article and Find Full Text PDFNo information exists on the mechanisms developed at the level of leaf water relations by pear-jujube trees (Zizyphus jujuba Mill.) to confront drought. For this reason, the purpose of the present study was to analyse its leaf water relations in order to clarify the resistance mechanisms (avoidance and tolerance) developed in response to a water stress and during recovery.
View Article and Find Full Text PDF