The COVID-19 pandemic presents unique requirements for accessible, reliable testing, and many testing platforms and sampling techniques have been developed over the course of the pandemic. Not all test methods have been systematically compared to each other or a common gold standard, and the performance of tests developed in the early epidemic have not been consistently re-evaluated in the context of new variants. We conducted a repeated measures study with adult healthcare workers presenting for SARS-CoV-2 testing.
View Article and Find Full Text PDFEpidemiological studies have found that there is a correlation between red and processed meat consumption and an increased risk of colorectal cancer. There are numerous existing hypotheses on what underlying mechanisms are causative to this correlation, but the results remain unclear. A common hypothesis is that lipid oxidation, which occurs in endogenous lipids and phospholipids in consumed food, are catalyzed by the heme iron in meat.
View Article and Find Full Text PDFA meat model system was used for screening lipid oxidation inhibiting capacity of diverse horticultural plant materials. In the model, heme-containing sarcoplasmic proteins from the meat water-phase were homogenized with linoleic acid and thiobarbituric reactive substances (TBARS) were measured. 23 Plant materials were investigated at three high (50, 100, and 200 ppm) concentrations and five plant extracts were tested at three low (5, 10, and 20 ppm) concentrations over time.
View Article and Find Full Text PDFThe underlying mechanism(s) behind the potential carcinogenicity of processed meat is a popular research subject of which the lipid oxidation is a common suspect. Different formulations and cooking parameters of a processed meat product were evaluated for their capacity to induce lipid oxidation. Meatballs made of beef or pork, containing different concentrations of fat (10 or 20 g 100 g), salt (2 or 4 g 100 g), subjected to differing cooking types (pan or deep frying), and storage times (1, 7, and 14 days), were evaluated using thiobarbituric reactive substances (TBARS).
View Article and Find Full Text PDFHorticultural plant materials not usually used from onion, carrot, beetroot, sea buckthorn, black and red currants as well as a wastewater powder from olive oil production were analyzed for total phenols content (FC), ferric reducing ability of plasma (FRAP), radical scavenging capacity (ABTS), and for major phenolic compounds by HPLC-MS. Antioxidant capacity and phenol content varied significantly between species and cultivars, with extracts of sea buckthorn leaves being superior. In different species, different phenolic compounds were closely associated with FRAP, ABTS and FC.
View Article and Find Full Text PDF