The development of flexible electronics has increased the demand for wearable pressure sensors that can be used to monitor various biomedical signals. In this context, pressure sensors based on zinc oxide (ZnO) have great potential since, besides the biocompatibility and biodegradability of this metal oxide, it also has piezoelectric properties. The common feature of these sensors is the alignment of the ZnO nanostructures in the strain direction.
View Article and Find Full Text PDFSolution-based memristors deposited by inkjet printing technique have a strong technological potential based on their scalability, low cost, environmentally friendlier processing by being an efficient technique with minimal material waste. Indium-gallium-zinc oxide (IGZO), an oxide semiconductor material, shows promising resistive switching properties. In this work, a printed Ag/IGZO/ITO memristor has been fabricated.
View Article and Find Full Text PDFDirect Laser Writing (DLW) has been increasingly selected as a microfabrication route for efficient, cost-effective, high-resolution material synthesis and conversion. Concurrently, lasers participate in the patterning and assembly of functional geometries in several fields of application, of which electronics stand out. In this review, recent advances and strategies based on DLW for electronics microfabrication are surveyed and outlined, based on laser material growth strategies.
View Article and Find Full Text PDFSolution-based memristors have gained significant attention in recent years due to their potential for the low-cost, scalable, and environmentally friendly fabrication of resistive switching devices. This study is focused on the fabrication and characterization of solution-based molybdenum trioxide (MoO) memristors under different annealing temperatures (200 to 400 °C). A MoO ink recipe is developed using water as the main solvent, enabling a simplified and cost-effective fabrication process.
View Article and Find Full Text PDF