Publications by authors named "E Toke"

Background: The emergence of novel SARS-CoV-2 variants that resist neutralizing antibodies drew the attention to cellular immunity and calls for the development of alternative vaccination strategies to combat the pandemic. Here, we have assessed the kinetics of T cell responses and protective efficacy against severe COVID-19 in pre- and post-exposure settings, elicited by PolyPEPI-SCoV-2, a peptide based T cell vaccine.

Methods: 75 Syrian hamsters were immunized subcutaneously with PolyPEPI-SCoV-2 on D0 and D14.

View Article and Find Full Text PDF

Purpose: Although chemotherapy is standard of care for metastatic colorectal cancer (mCRC), immunotherapy has no role in microsatellite stable (MSS) mCRC, a "cold" tumor. PolyPEPI1018 is an off-the-shelf, multi-peptide vaccine derived from 7 tumor-associated antigens (TAA) frequently expressed in mCRC. This study assessed PolyPEPI1018 combined with first-line maintenance therapy in patients with MSS mCRC.

View Article and Find Full Text PDF

Over 30 years after the first cancer vaccine clinical trial (CT), scientists still search the missing link between immunogenicity and clinical responses. A predictor able to estimate the outcome of cancer vaccine CTs would greatly benefit vaccine development. Published results of 94 CTs with 64 therapeutic vaccines were collected.

View Article and Find Full Text PDF

Long-term immunity to coronaviruses likely stems from T cell activity. We present here a novel approach for the selection of immunoprevalent SARS-CoV-2-derived T cell epitopes using an cohort of HLA-genotyped individuals with different ethnicities. Nine 30-mer peptides derived from the four major structural proteins of SARS-CoV-2 were selected and included in a peptide vaccine candidate to recapitulate the broad virus-specific T cell responses observed in natural infection.

View Article and Find Full Text PDF

Epidermal Langerhans cells (LCs) function as professional antigen-presenting cells of the skin. We investigated the LC-targeting properties of a special mannose-moiety-coated pathogen-like synthetic nanomedicine DermaVir (DV), which is capable to express antigens to induce immune responses and kill HIV-infected cells. Our aim was to use multiphoton laser microscopy (MLM) in vivo in order to visualize the uptake of Alexa-labelled DV (AF546-DV) by LCs.

View Article and Find Full Text PDF