Acute intermittent porphyria is an inherited error of heme synthesis. The underlying pathophysiology, involving mainly hepatic heme synthesis, is poorly understood despite its occurrence, and the severity of acute porphyria attack is still difficult to control. A better understanding of the interactions between heme synthesis and global metabolism would improve the management of AIP patients.
View Article and Find Full Text PDFEur J Mass Spectrom (Chichester)
February 2024
Tubulin-associated unit (tau) has an important role in the pathogenesis and the diagnosis of Alzheimer's disease (AD) and other tauopathies. In view of the diversity of tau proteoforms, antibody-free methods represent a good approach for unbiased quantification. We adapted and evaluated the single-pot, solid-phase-enhanced sample-preparation (SP3) protocol for antibody-free extraction of the tau protein in cerebro-spinal fluid (CSF) mimic and in human brain.
View Article and Find Full Text PDFEarly, rapid and non-invasive diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is needed for the prevention and control of coronavirus disease 2019 (COVID-19). COVID-19 mainly affects the respiratory tract and lungs. Therefore, analysis of exhaled breath could be an alternative scalable method for reliable SARS-CoV-2 screening.
View Article and Find Full Text PDFIntroduction: Accuracy of feature annotation and metabolite identification in biological samples is a key element in metabolomics research. However, the annotation process is often hampered by the lack of spectral reference data in experimental conditions, as well as logistical difficulties in the spectral data management and exchange of annotations between laboratories.
Objectives: To design an open-source infrastructure allowing hosting both nuclear magnetic resonance (NMR) and mass spectra (MS), with an ergonomic Web interface and Web services to support metabolite annotation and laboratory data management.
Motivation: Analysis of volatile organic compounds (VOCs) in exhaled breath by proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) is of increasing interest for real-time, non-invasive diagnosis, phenotyping and therapeutic drug monitoring in the clinics. However, there is currently a lack of methods and software tools for the processing of PTR-TOF-MS data from cohorts and suited for biomarker discovery studies.
Results: We developed a comprehensive suite of algorithms that process raw data from patient acquisitions and generate the table of feature intensities.