Publications by authors named "E Tauber"

The study of the circadian clock has greatly benefited from using as a model system. Yet accumulating evidence suggests that the fly might not be the canonical insect model. Here, I have analysed the circadian transcriptome of the jewel wasp by using RNA-seq in both constant darkness and constant light (in contrast to flies, the wasps are rhythmic under continuous light).

View Article and Find Full Text PDF

Hypothesizing that CpG codon dyads, formed by consecutive codons containing a cytosine-guanine pair (NNC-GNN), may play a crucial role in gene function, we conducted an extensive analysis to investigate their distribution and conservation within mammalian genes. Our findings reveal that genes characterized by a high density of CpG codon dyads are notably associated with homeobox domains and RNA polymerase II transcription factors. Conversely, genes exhibiting low CpG codon dyad density have links to DNA damage repair and mitosis.

View Article and Find Full Text PDF

Crickets serve as a well-established model organism in biological research spanning various fields, such as behavior, physiology, neurobiology, and ecology. Cricket circadian behavior was first reported over a century ago and prompted a wealth of studies delving into their chronobiology. Circadian rhythms have been described in relation to fundamental cricket behaviors, encompassing stridulation and locomotion, but also in hormonal secretion and gene expression.

View Article and Find Full Text PDF
Epigenetics and seasonal timing in animals: a concise review.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

July 2024

Seasonal adaptation in animals is a complex process that involves genetic, epigenetic, and environmental factors. The present review explores recent studies on epigenetic mechanisms implicated in seasonal adaptation in animals. The review is divided into three main sections, each focusing on a different epigenetic mechanism: DNA methylation, histone modifications, and non-coding RNA.

View Article and Find Full Text PDF

Our understanding of the gene regulatory network that constitutes the circadian clock has greatly increased in recent decades, notably due to the use of as a model system. In contrast, the analysis of natural genetic variation that enables the robust function of the clock under a broad range of environments has developed more slowly. In the current study, we analyzed comprehensive genome sequencing data from wild European populations of , which were densely sampled through time and space.

View Article and Find Full Text PDF