Zoological Lett
October 2023
Tissue-specific endopolyploidy is widespread among plants and animals and its role in organ development and function has long been investigated. In insects, the fat body cells of sexually mature females produce substantial amounts of egg yolk precursor proteins (vitellogenins) and exhibit high polyploid levels, which is considered crucial for boosting egg production. Termites are social insects with a reproductive division of labor, and the fat bodies of mature termite queens exhibit higher ploidy levels than those of other females.
View Article and Find Full Text PDFColony size in social insects is one of the most important factors in shaping their self-organized system. It affects a wide variety of traits such as foraging and defense strategies, social immune responses, the degree of polymorphism, and reproductive output. However, colony size estimation of subterranean termites in the field has been challenging, due to their extremely cryptic biology and multiple site-nesting behavior.
View Article and Find Full Text PDFSociety in eusocial insects is based on the reproductive division of labor, with a small number of reproductive individuals supported by a large number of nonreproductive individuals. Because inclusive fitness of all colony members depends on the survival and fertility of reproductive members, sterile members provide royals with special treatment. Here, we show that termite kings and queens each receive special food of a different composition from workers.
View Article and Find Full Text PDFDivision of labor is a prominent feature of social insect societies, where different castes engage in different specialized tasks. As brain differences are associated with behavioral differences, brain anatomy may be linked to caste polymorphism. Here, we show that termite brain morphology changes markedly with caste differentiation and age in the termite, Reticulitermes speratus.
View Article and Find Full Text PDFTermite queens and kings live longer than nonreproductive workers. Several molecular mechanisms contributing to their long lifespan have been investigated; however, the underlying biochemical explanation remains unclear. Coenzyme Q (CoQ), a component of the mitochondrial electron transport chain, plays an essential role in the lipophilic antioxidant defense system.
View Article and Find Full Text PDF