Objectives: There is increased interest in the potential benefits of complementary therapies, of which dietary plant-derived polysaccharides (dPPs) are an important component. We examined the impact of oral ingestion of a pre-biotic dPP supplement active compound (AC) on serum glycosylation and clinical variables associated with inflammation and general health in patients with RA.
Methods: A double-blind, placebo-controlled, parallel-group clinical trial was used.
Background: The functional role of dietary carbohydrates in nutrition is one of the most complex and at times controversial areas in nutritional science. In-vitro and in-vivo studies suggest that certain dietary saccharide biopolymers can have bifidogenic and or immunomodulatory effects, and that some could represent preferential substrates or precursors that can impact cellular glycosylation.
Objective: Examine the impact of oral ingestion of a standardized dietary plant-derived polydisperse polysaccharide supplement (Advanced Ambrotose powder (AA)) on the N-glycosylation status of serum glycoproteins in a cohort of healthy individuals.
Lipid A structure is a critical determinant of the interaction between pathogens and the innate immune system. Previously, we demonstrated the presence of non- and monophosphorylated tetra-acylated lipid A structures in the outer membrane of Porphyromonas gingivalis, an agent of human periodontal disease. These modifications to lipid A structure lead to evasion and suppression of innate defenses mediated by Toll-like receptor 4 (TLR4) and cationic antimicrobial peptides.
View Article and Find Full Text PDFBackground: Mycobacterium ulcerans disease (Buruli ulcer) is a neglected tropical disease common amongst children in rural West Africa. Animal experiments have shown that tissue destruction is caused by a toxin called mycolactone.
Methodology/principal Findings: A molecule was identified among acetone-soluble lipid extracts from M.
Glucose in airway surface liquid (ASL) is maintained at low concentrations compared to blood glucose. Using radiolabelled [(3)H]-D: -glucose and [(14)C]-L: -glucose, detection of D: - and L: -glucose by high-performance liquid chromatography and metabolites by nuclear magnetic resonance, we found that glucose applied to the basolateral side of H441 human airway epithelial cell monolayers at a physiological concentration (5 mM) crossed to the apical side by paracellular diffusion. Transepithelial resistance of the monolayer was inversely correlated with paracellular diffusion.
View Article and Find Full Text PDF