Publications by authors named "E Taoufik"

Loss of dopaminergic neurons in Parkinson's disease (PD) is preceded by loss of synaptic dopamine (DA) and accumulation of proteinaceous aggregates. Linking these deficits is critical to restoring DA signaling in PD. Using murine and human pluripotent stem cell (hPSC) models of PD coupled with human postmortem tissue, we show that accumulation of α-syn micro-aggregates impairs metabolic flux through the pentose phosphate pathway (PPP).

View Article and Find Full Text PDF

Introduction: The congenital anomalies of the large vessels are rare, of which the left inferior vena cava and the aorta on the right, occupies the 2nd rank after the duplicity. They represent a challenge in some visceral, urological and vascular surgeries. We report the case of an incidental finding during the operative exploration of a patient who has a gastric adenocarcinoma with isolated cells and who has benefited from a total gastrectomy and this transposition confirmed by a postoperative CT scan.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most common neurodegenerative disorder, classically associated with extensive loss of dopaminergic neurons of the substantia nigra pars compacta. The hallmark of the disease is the accumulation of pathogenic conformations of the presynaptic protein, α-synuclein (αSyn), and the formation of intraneuronal protein aggregate inclusions. Neurodegeneration of dopamine neurons leads to a prominent dopaminergic deficiency in the basal ganglia, responsible for motor disturbances.

View Article and Find Full Text PDF

Combining high throughput screening approaches with induced pluripotent stem cell (iPSC)-based disease modeling represents a promising unbiased strategy to identify therapies for neurodegenerative disorders. Here we applied high content imaging on iPSC-derived neurons from patients with familial Parkinson's disease bearing the G209A (p.A53T) α-synuclein (αSyn) mutation and launched a screening campaign on a small kinase inhibitor library.

View Article and Find Full Text PDF

Stem cell technologies have opened up new avenues in the study of human biology and disease. In particular, the advent of human embryonic stem cells followed by reprograming technologies for generation of induced pluripotent stem cells have instigated studies into modeling human brain development and disease by providing a means to simulate a human tissue otherwise completely or largely inaccessible to researchers. Brain development is a complex process achieved in a remarkably controlled spatial and temporal manner through coordinated cellular and molecular events.

View Article and Find Full Text PDF