Assessing the environmental impacts of food, food systems and diets is highly complex due to the multitude of processes involved, the uncertainty in assessment models, the variability in production systems and the large range of products available. No single assessment method alone can provide a complete evidence base. The increasing number of Life Cycle Assessment and food system analyses, and more recently the integration of planetary boundaries offer insights from which we can draw some robust high-level conclusions, whilst recognising there is a need for more detailed analysis to capture the inherent nuances of more location and context-specific situations.
View Article and Find Full Text PDFThis scoping review examines environmental impacts related to food production and consumption in Nordic and Baltic countries. The overarching advice to all Nordic and Baltic countries, in line with the current body of scientific literature, is to shift to a more plant-based dietary pattern and avoid food waste. Taking into account current consumption patterns, there is a high potential and necessity to shift food consumption across the countries to minimise its environmental impact.
View Article and Find Full Text PDFThe overall aim of this paper was to provide background knowledge to the Nordic Nutrition Recommendations 2023 Committee for integrating environmental sustainability in a framework for national Food-Based Dietary Guidelines (FBDG) within the Nordics and Baltics. Additionally, this paper aims to give an overview of recent Nordic scientific literature on environmental impact of foods and dietary patterns and of the FBDG of the Nordics. Finally, we suggest methods for developing national sustainable FBDG.
View Article and Find Full Text PDFMathematical optimization is a useful tool for modeling diets that fulfill requirements for health and environmental sustainability, however, population-based optimization approaches fail to account for underlying dietary diversity in populations. This study proposes a methodological approach to consider diverse dietary intake patterns in mathematical optimization of nutritionally adequate low-carbon diets and investigates the differences between different population groups, along with trade-offs between greenhouse gas emission (GHGE) reduction and the inconvenience of dietary changes required to achieve optimized diets. A k-means clustering analysis was applied to individual dietary intake data from Denmark, which resulted in four clusters with different dietary patterns.
View Article and Find Full Text PDFFor many decades, food-based dietary guidelines (FBDGs) were only health-oriented. This changed post-2009 when gradually, an increasing number of countries began to include environmental sustainability considerations in their guidelines. International organisations such as the Food and Agriculture Organization (FAO) and the World Health Organization (WHO) have stated that governments should include environmental sustainability in future FBDGs.
View Article and Find Full Text PDF