Chromatin structure and function are determined by a plethora of proteins whose genome-wide distribution is typically assessed by immunoprecipitation (ChIP). Here, we developed a novel tool to investigate the local chromatin environment at specific DNA sequences. We combined the programmable DNA binding of dCas9 with the promiscuous biotin ligase BirA* (CasID) to biotinylate proteins in the direct vicinity of specific loci.
View Article and Find Full Text PDFAny profound comprehension of gene function requires detailed information about the subcellular localization, molecular interactions and spatio-temporal dynamics of gene products. We developed a multifunctional integrase (MIN) tag for rapid and versatile genome engineering that serves not only as a genetic entry site for the Bxb1 integrase but also as a novel epitope tag for standardized detection and precipitation. For the systematic study of epigenetic factors, including Dnmt1, Dnmt3a, Dnmt3b, Tet1, Tet2, Tet3 and Uhrf1, we generated MIN-tagged embryonic stem cell lines and created a toolbox of prefabricated modules that can be integrated via Bxb1-mediated recombination.
View Article and Find Full Text PDFBackground: In comparison with men, women have a better prognosis when experiencing aortic valve stenosis, hypertrophic cardiomyopathy, or heart failure. Recent data suggest that androgens like testosterone or the more potent dihydrotestosterone contribute to the development of cardiac hypertrophy and failure. Therefore, we analyzed whether antiandrogenic therapy with finasteride, which inhibits the generation of dihydrotestosterone by the enzyme 5-α-reductase, improves pathological ventricular remodeling and heart failure.
View Article and Find Full Text PDFMany photosynthetic organisms globally, including crops, forests and algae, must grow in environments where the availability of light energy fluctuates dramatically. How photosynthesis maintains high efficiency despite such fluctuations in its energy source remains poorly understood. Here we show that Arabidopsis thaliana K(+) efflux antiporter (KEA3) is critical for high photosynthetic efficiency under fluctuating light.
View Article and Find Full Text PDFCitrate synthase has a key role in the tricarboxylic (TCA) cycle of mitochondria of all organisms, as it catalyzes the first committed step which is the fusion of a carbon-carbon bond between oxaloacetate and acetyl CoA. The regulation of TCA cycle function is especially important in plants, since mitochondrial activities have to be coordinated with photosynthesis. The posttranslational regulation of TCA cycle activity in plants is thus far almost entirely unexplored.
View Article and Find Full Text PDF