Acinetobacter baumannii is a nosocomial pathogen highly resistant to environmental changes and antimicrobial treatments. Regulation of cellular motility and biofilm formation is important for its virulence, although it is poorly described at the molecular level. It has been previously reported that Acinetobacter genus specifically produces a small positively charged metabolite, polyamine 1,3-diaminopropane, that has been associated with cell motility and virulence.
View Article and Find Full Text PDFAs one of the most diverse habitats of microorganisms, soil has been recognised as a reservoir of both antibiotics and the antibiotic resistance genes (ARGs). Bacteria naturally inhabiting soil or water often possess innate ARGs to counteract the chemical compounds produced by competitors living in the same environment. When such bacteria are able to cause infections in immunocompromised patients, their strong innate antibiotic resistance mechanisms make treatment difficult.
View Article and Find Full Text PDFis a dangerous hospital pathogen primarily due to its ability to form biofilms on different abiotic and biotic surfaces. The present study investigated the effect of riboflavin- and chlorophyllin-based antimicrobial photodynamic therapy, performed with near-ultraviolet or blue light on the viability of bacterial cells in biofilms and their structural stability, also determining the extent of photoinduced generation of intracellular reactive oxygen species as well as the ability of to form biofilms after the treatment. The efficacy of antimicrobial photodynamic therapy was compared with that of light alone and the role of the photosensitizer type on the photosensitization mechanism was demonstrated.
View Article and Find Full Text PDFThe photodynamic inactivation (PDI) represents the potential alternative to traditional antibiotic therapy, and can be applied to treat various bacterial infections, including those caused by Gram-negative bacterial strains. One of the treatment modalities is based on the capacity of bacterial cells to synthesize the excess amounts of porphyrins after exposure to an externally applied 5-aminolevulinic acid (5-ALA), which makes them photosensitive and leads to reduced survival after irradiation with an appropriately selected light source. This study focuses on the sensitization and the photoinduced inactivation of Salmonella enterica cells in PBS containing 0.
View Article and Find Full Text PDFand are opportunistic pathogens causing hospital infections with limited treatment options due to bacterial multidrug resistance. Here, we report that antimicrobial photodynamic therapy (aPDT) based on the natural photosensitizers riboflavin and chlorophyllin inactivates and . The riboflavin and chlorophyllin photostability experiments assessed the photomodifications of photosensitizers under the conditions subsequently used to inactivate and .
View Article and Find Full Text PDF