Wastewater effluents are a continuous source of pharmaceuticals in water bodies, which pose a serious environmental threat to aquatic ecosystems. This work provides a comprehensive technical, environmental and cost assessments of different advanced quaternary treatments for wastewater effluents, with special focus on novel Non-Thermal Plasma technology. For this porpouse Non-Thermal Plasma, Sand Filtration + Ozonation, Ultrafiltration, Ultrafiltration + Nanofiltration and Ultrafiltration + Reverse Osmosis technologies were compared with UV disinfection-based technology.
View Article and Find Full Text PDFThe widespread presence of pharmaceuticals in wastewater effluents after treatment stands as a significant challenge faced in the field of wastewater management and public health. Governments and the scientific community have worked to meet this urgent need for effective solutions. Nevertheless, the development of detection strategies for pharmaceutical monitorization capable of delivering rapid, on-site, and sensitive responses remains an ongoing necessity.
View Article and Find Full Text PDFThe control of the oxidative stability of biodiesel and blends of biodiesel with diesel is one of the major concerns of the biofuel industry. The oxidative degradation of biodiesel can be accelerated by several factors, and this is most critical in the so-called second generation biodiesel, which is produced from low-cost raw materials with lower environmental impacts. The addition of antioxidants is imperative to ensure the oxidative stability of biodiesel, and these are considered products of high commercial value.
View Article and Find Full Text PDFMaize Cob Waste (MCW) is available worldwide in high amounts, as maize is the most produced cereal in the world. MCW is generally left in the crop fields, but due to its low biodegradability it has a negligible impact in soil fertility. Moreover, MCW can be used as substrate to balance the C/N ratio during the Anaerobic co-Digestion (AcoD) with other biodegradable substrates, and is an excellent precursor for the production of Activated Carbons (ACs).
View Article and Find Full Text PDFTwo activated carbons (ACs) were prepared by physical activation of Maize Cob Waste (MCW) with CO, during 2 and 3 h (MCW(PA)2h and MCW(PA)3h, respectively). Two other ACs were prepared by chemical activation: a) MCW(LD) - MCW was impregnated with anaerobic liquid digestate (LD) and carbonized under N atmosphere; and b) CAR-MCW(LD) - previously carbonized MCW was impregnated with LD and carbonized under N atmosphere. All ACs were fully characterized for textural and chemical properties, and then used in dynamic HS removal assays from real biogas samples.
View Article and Find Full Text PDF