Publications by authors named "E Strunck"

Essential thrombocythemia (ET) is a heterogeneous disorder. For example, the growth of erythropoietin-independent erythroid colonies, termed "endogenous erythroid colonies (EECs)", has previously been observed in only 50% of ET patients. We have recently described the overexpression of a hematopoietic receptor, PRV-1 (polycythemia rubra vera-1), in patients with polycythemia vera (PV).

View Article and Find Full Text PDF

To date, the diagnosis of polycythemia vera (PV) relies on clinical criteria. We have recently described the overexpression of a hematopoietic receptor, polycythemia rubra vera-1 (PRV-1), in patients with PV. Here, we report a quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay for the measurement of PRV-1 mRNA levels.

View Article and Find Full Text PDF

We investigated the influence of estrogenic and antiestrogenic treatment on proteolytic activity--especially on MMP-2 and MMP-13--in the RUCA-I transplantable endometrial tumor model. Morphological studies demonstrate that RUCA-I cells are forming highly differentiated gland-like structures by remodelling and invading the underlying ECM. Estrogens upregulate the mRNA levels of MMP-2 and MMP-13 in the rat uterus.

View Article and Find Full Text PDF

The cDNA for polycythemia rubra vera 1 (PRV-1), a novel hematopoietic receptor, was recently cloned by virtue of its overexpression in patients with polycythemia vera. PRV-1 is a member of the uPAR/CD59/Ly6 family of cell surface receptors, which share a common cysteine-rich domain and are tethered to the cell surface via a glycosylphosphatidylinositol (GPI) link. We have determined the intron-exon structure of the PRV1 gene and show that the locus is structurally intact in patients with polycythemia vera.

View Article and Find Full Text PDF

Sesquiterpene lactones (SLs) have potent anti-inflammatory properties. We have shown previously that they exert this effect in part by inhibiting activation of the transcription factor NF-kappaB, a central regulator of the immune response. We have proposed a molecular mechanism for this inhibition based on computer molecular modeling data.

View Article and Find Full Text PDF