Publications by authors named "E Sterpin"

Background And Purpose: Intensity Modulated Proton Therapy (IMPT) faces challenges in lung cancer treatment, like maintaining plan robustness for moving tumors against setup, range errors, and interplay effects. Proton Arc Therapy (PAT) is an alternative to maintain target coverage, potentially improving organ at risk (OAR) sparing, reducing beam delivery time (BDT), and enhancing patient experience. We aim to perform a systematic plan comparison study between IMPT and energy layer (EL) and spot assignment algorithm - Proton Arc Therapy (ELSA-PAT) to assess its potential for lung cancer treatment.

View Article and Find Full Text PDF
Article Synopsis
  • ProtOnART is a technique that improves proton therapy for esophageal cancer by adapting to changes in patient anatomy during treatment, focusing on effective autodelineation methods for target and risk areas.
  • A study of 15 patients compared various autodelineation methods and their effectiveness in creating adaptive treatment plans, finding that deformation techniques yielded better results for organs at risk and clinical target volumes.
  • The results showed that while most adaptive treatment plans met initial evaluation goals, significant challenges remained in ensuring adequate coverage of clinical targets, necessitating manual intervention for clinical acceptance.
View Article and Find Full Text PDF

To demonstrate the feasibility of integrating fully-automated online adaptive proton therapy strategies (OAPT) within a commercially available treatment planning system and underscore what limits their clinical implementation. These strategies leverage existing deformable image registration (DIR) algorithms and state-of-the-art deep learning (DL) networks for organ segmentation and proton dose prediction.Four OAPT strategies featuring automatic segmentation and robust optimization were evaluated on a cohort of 17 patients, each undergoing a repeat CT scan.

View Article and Find Full Text PDF

In proton therapy, range uncertainties prevent optimal benefit from the superior depth-dose characteristics of proton beams over conventional photon-based radiotherapy. To reduce these uncertainties we recently proposed the use of phase-change ultrasound contrast agents as an affordable and effective range verification tool. In particular, superheated nanodroplets can convert into echogenic microbubbles upon proton irradiation, whereby the resulting ultrasound contrast relates to the proton range with high reproducibility.

View Article and Find Full Text PDF

Accurate reference dosimetry with ionization chambers (ICs) relies on correcting for various influencing factors, including ion recombination. Theoretical frameworks, such as the Boag and Jaffe theories, are conventionally used to describe the ion recombination correction factors. Experimental methods are time consuming, the applicability may be limited and, in some cases, impractical to be used in clinical routine.

View Article and Find Full Text PDF