Nuclear positioning is a crucial aspect of cell and developmental biology. One example is the apical movement of nuclei in neuroepithelia before mitosis, which is essential for proper tissue formation. While the cytoskeletal mechanisms that drive nuclei to the apical side have been explored, the influence of nuclear properties on apical nuclear migration is less understood.
View Article and Find Full Text PDFTo fulfil their function, epithelial tissues need to sustain mechanical stresses and avoid rupture. Although rupture is usually undesired, it is central to some developmental processes, for example, blastocoel formation. Nonetheless, little is known about tissue rupture because it is a multiscale phenomenon that necessitates comprehension of the interplay between mechanical forces and biological processes at the molecular and cellular scales.
View Article and Find Full Text PDFGraphene materials, used as electrocatalyst support in green hydrogen production, contribute to increasing the efficiency and robustness of various systems. However, the preparation of a hybrid catalyst containing graphene materials from industrial wastes is still a challenge due to the heterogeneity of the waste. We report the synthesis of 3D electrodes using graphene oxides (GOs) from industrial waste (IW) prepared by immersion onto Toray carbon paper as a 3D support onto GO suspensions and electrodepositing NiFe layered double hydroxides (LDHs).
View Article and Find Full Text PDFJ Chem Theory Comput
March 2024
We report on a theoretical study of a Cs molecule illuminated by two lasers and show how this can result in novel quantum dynamics. We reveal that these interactions facilitate the bypass of the non-crossing rule, forming light-induced conical intersections and modifiable avoided crossings. Our findings show how laser field orientation and strength, along with initial phase differences, can control molecular-state transitions, especially on the scale.
View Article and Find Full Text PDF