Synthetic polymers are widely used in medical devices and implants where biocompatibility and mechanical strength are key enablers of emerging technologies. One concern that has not been widely studied is the potential of their microplastics (MPs) release. Here we studied the levels of MP debris released following 8-week in vitro tests on three typical polyglycolic acid (PGA) based absorbable sutures (PGA 100, PGA 90 and PGA 75) and two nonabsorbable sutures (polypropylene-PP and polyamide-PA) in simulated body fluid.
View Article and Find Full Text PDFRapid reaction time, high attainable temperatures, minimum operating voltage, excellent optical transmittance, and tunable sheet resistance are all desirable properties of transparent conductors, which are important thin-film components in numerous electronic devices. A seamless nanowire network (NWN) refers to a structure composed of nanowires that lack interwire contact junctions, resulting in a continuous and uninterrupted network arrangement. This seamless nature leads to unique properties, including high conductivity and surface area-to-volume ratios, which make it a promising candidate for a vast application range in nanotechnology.
View Article and Find Full Text PDFRaman spectroscopy is an indispensable tool in the analysis of microplastics smaller than 20 μm. However, due to its limitation, Raman spectroscopy may be incapable of effectively distinguishing microplastics from micro additive particles. To validate this hypothesis, we characterized and compared the Raman spectra of six typical slip additives with polyethylene and found that their hit quality index values (0.
View Article and Find Full Text PDFConductive and transparent metallic nanowire networks are regarded as promising alternatives to Indium-Tin-Oxides (ITOs) in emerging flexible next-generation technologies due to their prominent optoelectronic properties and low-cost fabrication. The performance of such systems closely relies on many geometrical, physical, and intrinsic properties of the nanowire materials as well as the device-layout. A comprehensive computational study is essential to model and quantify the device's optical and electrical responses prior to fabrication.
View Article and Find Full Text PDF